
Every team is accountable to respect these standards during API development,
and every member is encouraged to work collaboratively with members of the
API Community of Practice to improve these guidelines.

In the case of an evolution of these API standards, the following rules must be
followed:

• Existing APIs should not be systematically changed, although this is ad-
visable,

• New APIs must respect the current version of the standards.

This document uses the terms RIGHT, SHOULD, MUST, MUST as key-
words to define the requirement levels of a specification as defined in RFC 2119.

Table des matières

• Basic Principles
• API First
• Compatibility
• Documentation
• REST
• Message
• Data and representation
• Business validations
• Business errors
• Exceptions
• JSON Payload

• Request
• Asynchronisme
• Impersonation
• Localisation
• Pagination
• Nomenclature
• General rules
• URI
• Versioning
• Protocole
• HTTP
• TLS
• Exploitation
• Environnements
• Monitoring

1

http://microformats.org/wiki/rfc-2119
basic-principles.md.md
basic-principles.md#api-first
basic-principles.md#compatibilité
basic-principles.md#documentation
basic-principles.md#rest
message.md
message.md#données-et-représentations
message.md#validations-métiers
message.md#erreurs-métiers
message.md#exception
message.md#payload-json
requête.md
request.md#asynchronisme
request.md#impersonation
request.md#localisation
request.md#pagination
nomenclature.md
nomenclature.md#règles-générales
nomenclature.md#uri
nomenclature.md#versioning
protocol.md
protocol.md#http
protocol.md#tls
operations.md
operations.md#environnements
operations.md#monitoring


Basic principles

This section covers the basic principles.

API First

Design API before implementation

The signature of the API – also called interface or contract – MUST be done
before implementation (OpenAPI specification, Stub, etc).

The goal is to allow stakeholders to give early feedback and to show self-discipline
by focusing on:

• knowledge of the functional domain and the common requirements,
• entities and business resources, i.e. avoid having APIs for specific use-cases,
• a clear divide between the WHAT and the HOW

The API contract is the unique source of truth, not the implemen-
tation. If your development language does not support automatic creation of
documentation, you SHOULD write the documentation manually.

The implementation of an API MUST always be consistent with its description
: it represents the contract between the API and the consumers.

Compatibility

Do not break backward compatibility

API updates in the same major version MUST NOT break backward compat-
ibility. An API is a contract between the consumers and the producer which
cannot be broken by unilateral decisions.

There are two ways to update an API without breaking it:

• follow the compatible extension rules,
• introduce a new version of the API while maintaining the previous ver-

sions.

Rules to extand an API

Each new minor version of an API MUST follow these extension rules:

• MUST NOT remove fields/properties,
• MUST NOT make mandatory fields that were initially described as op-

tional,

2



• MUST NOT delete an existing endpoint,
• Every new addition to a minor version MUST be optional.

If, for any reason, these rules cannot be followed, then a new major version
MUST be deployed.

Documentation

General documentation

An API MUST be documented in a Wiki and MUST contain at least the
following:

• a full description
• the team in charge of the API
• a link to the swagger documentation

This Wiki page MUST be added to our internal directory.

Nota Bene : Our API community of practice is aware that this solution is
temporary. In the future, we will have a centralised directory such as an API
Management.

Documentation

An API MUST provide a full, explicit and up-to-date documentation of its
endpoints and SHOULD expose it as a Swagger.

REST

Resources instead of Verbs

APIs MUST be designed around resources and MUST not represent actions.
An API MAY include hypermedia (HATEOAS).

Maturity level

Ideally, we are aiming for Richardson’s second maturity level, how-
ever it is possible to use level 3. Further information is available on
https://martinfowler.com/articles/richardsonMaturityModel.html.

REST is based on entities/resources and usage of standard HTTP methods
(such as GET/POST/PUT/DELETE) as operations. URLs MUST contain
names and no verb.

3



For example, instead of having the verb cancel in the URL, it is preferrable to
use the resource cancellation.

Use of verbs

Standard HTTP methods are not meaningless: they MUST be used to specify
the type of action required.

Although these methods are not equivalent to CRUD, it is preferable, in our
case, to use them as they are for simplification purposes and to keep only non
idempotent creations.

Method Action Definition
POST Non-idempotent Create a resource C
GET Nullipotent (Safe) Get one (or many) resource(s) R
PUT Idempotent Update a ressource U
DELETE Idempotent Delete a resource D

POST

• A POST (create, in our case) successfully executed will return a 201. The
header MUST contain Location with a link to the newly created entity.

• Asynchronous operations MUST return a 202 containing a header
Location in order to monitor the operation.

GET

• A successful GET returns a resource and a 200.
• A successful GET returns multiple resources and a 200 if all resources are

present or a 206 if some of the resources are returned (paging, top n). In
this case, the response MUST contain a Content-Range header.

PUT

• A successful PUT (update, in our case) returns a 200 or a 204.
• Asynchronous operations MUST return a 202 containing a Location

header to monitor the status of the operation.

DELETE

• A successful DELETE returns a 200 or a 204.
• Asynchronous operations MUST return a 202 containing a Location

header to monitor the status of the operation.

4



Message

This section covers governance about the structure of messages.

Data and description

Encoding

Data SHOULD be encoded in UTF-8.

Enums

Data SHOULD be displayed as enumerations rather than cryptic codes. Also,
enumeration positions SHOULD be serialized as camelCase characters to avoid
mapping errors.

Content-type: application/x.va.validation+json
{

// No ambiguity
"title":"baron"

// Risk of mapping error
"title": 4

}

Data and display

When a property can be conveyed either as raw data or as data ready to be
displayed, the API SHOULD state it clearly.

Content-type: application/x.va.validation+json
{

// By default, it is data
"myDateTime": "1997-09-02T19:20:30.45+01:00",

// Is it long enough ? Explain when it is a displayable property
"myDateTimeDisplay": "Monday 2 September at 7pm 20mn 30sec",

"myDate": "1985-08-09", // By default, it is data
"myDateDisplay": "Vendredi 9 août 1985", // Explain when it is displayable (and the birthday of Jérôme Freyre)

"gender":"M",
"genderDisplay":"Male"

}

5



Booleans

Booleans properties name MAY be prefixed by is or has in order to make it
intuitive.

Identifiers

For security reasons, technical identifiers SHOULD be non-sequential and non-
deterministic, e.g., UUID v4 RFC-4122.

Identical representation of business data

The API SHOULD be based on identical representation of business data. For
more information, have a look at our Représentation communes des données
business (Internal link).

Business validations

Format of business validations

When a request fails because of business validations, it SHOULD respond a
422 HTTP code, SHOULD have the following Content-Type

Content-type: application/vnd.va.validation+json

and SHOULD return this kind of payload

{
"validations": [

{
// Field translated according the i18n/l10n and visible to the user
"display": "The name is required",

// ValidationCode used to configure the label
"code":"validationRequired",

// Related field(s)
"fields":["firstName"],

// Variable value constraint (Validation property)
"valParams":{}

},
{

// Field translated according the i18n/l10n and visible to the user
"display": "Le npa devrait comporter au moins 42 caractères",

6

https://tools.ietf.org/html/rfc4122


// ValidationCode used to configure the label
"code":"validationMinLength",

// Related field(s)
"fields":["address[0].npa"],

// Variable value constraint (Validation property)
"valParams":{

"min": 42
}

},
{

...
}

]
}

Business errors

Structure of business errors

When a business operation fails, the response status MUST be in the range of
4XX, Content-Type SHOULD be

Content-type: application/vnd.va.error+json

and the payload SHOULD be similar to

{
// Technical field
"message": "This message will not be displayed to the user",

// i18n/l10n field which can be displayed to the user
"display": "If this error occurs again, please call your mama!",

// Standard error code used client-side to define a specific label to display

"code":"uniqueErrorCodeForDoesNotWork"
}

7



Exception

Exception structure

On production environments, software exceptions MUST return an HTTP sta-
tus code 500 and MUST NOT return a stack trace.

On non-production environments, payloads SHOULD be similar to

Content-type: application/vnd.va.exception+json
{

// Usual technical fields
"message": "object not set to an instance",
"stackTrace": "...",
"innerException": {...}

}

JSON Payload

Format - content negociation

Payloads SHOULD be returned in the application/json format and MUST
comply with its conventions (camelCase, etc). A webservice MAY process other
formats (such as xml, yml) via the standard Accept header.

JSON’ception

Properties contained in a JSON MUST NOT contain JSON or XML them-
selves.

Request

This section covers query standards (i.e. filter, paging, sorting, asynchronism,
etc).

Asynchronism

During an operation conducted asynchronously by the server, the server MUST
return an HTTP code 202 with a header Location giving the location of the URL
to follow the operation. This URL will point to a resource of type operations.

Location: https://VaHappyHi:8081/v2/operations/8156ab4e

8



The operation resource SHOULD contain the current state of the operation
(notStarted, running, succeeded, failed).

• If the status is notStarted or running, then the return code MUST be
202 and the header location remains the same,

• If the status is notStarted or running, then the header Retry-After
SHOULD indicate the number of seconds to wait before checking the
status of the operation,

• If the state is succeeded, then the return code MUST be 200 and the
header location should now return the location of the resource in question.

Impersonation

The impersonation implementation SHOULD NOT be implemented only at
customer level, but SHOULD be at API level. Impersonation SHOULD be
done using a custom header:

Va-Impersonate: sio

The API SHOULD log the fact that the action was performed by user A
impersonating user B.

JSON Patch

The update of an object can be done via an http request PUT. In addition, use of
‘PATCH’ is possible using the operations described in RFC-6902 (JavaScript
Object Notation (JSON) Patch).

We SHOULD only use the add, remove and replace operations. Other opera-
tions described in the RFC SHOULD NOT not be used.

if an object is
{ firstName:"Albert", contactDetails: { phoneNumbers: [] } };

and we apply the following operations:
[

{ op:"replace", path:"/firstName", value:"Joachim" },
{ op:"add", path:"/lastName", value:"Wester" },

{ op:"add", path:"/contactDetails/phoneNumbers/0", value: { number:"555-123" } }
];

The object MUST be transformed into
{ firstName:"Joachim", lastName:"Wester", contactDetails: { phoneNumbers: [{number:"555-123"}] } };

Warning, it has been noted that the swagger may not be generated correctly.
In this case, it MUST contain a textual description describing that it is a
json-patch operation and what type of object it accepts.

9

https://tools.ietf.org/html/rfc6902


Localisation

The desired language SHOULD be set using the Accept-Language header
and COULD contain either a language with locale (fr-CH) or a language alone
(FR).

Please note that the content of the JSON payload as well as the parameters
transmitted in the URL MUST be formatted according to the JSON standard.

Exemple

HTTP Request

GET /contracts HTTP/1.1
Accept-Language: fr-ch, de-ch

HTTP Response

HTTP/1.1 200 OK
Content-Type: [...]
Content-Language: fr-ch

[...]

Paging

Access to data lists MUST support paging for a better consumer experience.
This is true for all lists that are potentially larger than a few hundred records.

There are two types of iteration techniques:

• Offset/Limit-based,
• Cursor-based.

It is important to take into account the way pagination is used by the consumers.
It seems that direct access to a specific page is less used than navigation via
links of the type next page/previous page. Therefore, it is better to favour
cursor-based pagination.

In all cases, we MUST start pagination at 0.

Nomenclature

This section covers standards linked to naming of resources, URIs, …

10



Global rules

Naming conventions

APIs MUST be developed in english, MUST NOT contain acronyms and
MUST use ‘camelCase’ convention (unless otherwise specified).

Glossary

Field names MUST come from our business glossary (internal link), or be based
on AFA’s glossary (Specific Insurance Link).

URI

Each URI MUST follow the Standard naming conventions, except for ‘camel-
Case’. Instead, a hyphen - SHOULD be used for compound words. Further-
more a URI MUST NOT end with a slash /.

Examples

// Returns all people
GET https://MyHappyApi:8081/v2/people
// Returns person d8a0f1ed
GET https://MyHappyApi:8081/v2/people/d8a0f1ed

// Returns a list of children resources 'home-in-one' for person d8a0f1ed
GET https://MyHappyApi:8081/v2/people/d8a0f1ed/home-in-one
/// Returns the child resource 'home-in-one' 587d038d for person d8a0f1ed
GET https://MyHappyApi:8081/v2/people/d8a0f1ed/home-in-one/587d038d

// Returns current config
GET https://MyHappyApi:8081/v2/configuration
// Returns config for person d8a0f1ed
GET https://MyHappyApi:8081/v2/people/d8a0f1ed/configuration

Versioning

The version of the API SHOULD be specified right after the server root seg-
ment and MUST match the first - major - digit from the semantic version.

https://MyHappyApi:8081/v2/...

11



Furthermore for non production environments, the latest version COULD be
exposed through a latest segment, i.e.

https://MyHappyApi:8081/latest/...

Protocol

This section addresses issues related to the protocol and its standards.

HTTP

HTTP Protocol

All APIs MUST support the HTTP protocol and its semantics.

HTTP Codes

Some rules for the use of HTTP codes, the API developer

• MUST NOT invent new HTTP codes or derive from their original mean-
ing,

• MUST provide high quality documentation when using HTTP codes not
listed below.

2XX Success

The request was processed successfully.

Code Definition
200 OK Succès de la requête
201 Created Resource created successfully
202 Accepted Request accepted but not completed (asynchronous process…)
204 No content Request successful, empty response
206 Partial Résultat partiel (voir pagination)

4XX Client Errors

The request contained an error from the consumer.

12



Code Definition
400
Bad re-
quest

The request
is not valid
(syntax, size,
…)

401
Unau-
tho-
rized

The client is
not authenti-
cated

403
Forbid-
den

The
customer
does not
have the
necessary
rights

404
Not
found

The
requested
resource does
not exist

416
Range
Not
Satisfi-
able

Range Not
Satisfiable

418
I’m a
teapot

A request for
coffee was
sent to a
teapot

422
Busi-
ness
valida-
tion

A request
failed due to
a business
validation
error

Note: in the case of an empty collection, the result must be a 200 returning an
empty array. The 404 is not appropriate since, although empty, the collection
exists.

5XX Server Errors

The server couldn’t process the request.

13



Code Definition
500 Internal server error An unexpected exception occurred.

TLS

An API using the protocol HTTP SHOULD use HTTPS.

Operations

This section covers standards linked to operations.

Environments

An API MUST be deployed to a QA (also called UAT) environment before
being pushed to production.

If more environments are required, an API developer SHOULD follow existing
DNS naming conventions (internal link) to name environments.

Monitoring

Monitoring API consumption

The team in charge of an API running in a production environment SHOULD
ensure it is being monitored.

Health check

An API SHOULD expose an endpoint to check its health status

{
"name": "Va.Api.Business.MyAwesomeProduct",
"status": "up",
"dependencies": {

"Va.Api.Tech.Dependency1": {
"depth": 1,
"status": "up"

},
"Va.Api.Tech.SubDependency": {

"depth": 2,
"status": "up"

14



}
}

}

Furthermore, continous integration tools COULD use the healthcheck endpoint
to confirm that the API is running correctly.

Dependencies

In non-production environments, an API SHOULD expose an endpoint to list
Vaudoise library dependencies being used.

{
"product": "Va.XCut.Back.Actuators.Core",
"version": "1.0.0.13490",
"libraries": [

{
"name": "Va.XCut.Api.Template.Application",
"product": "Va.XCut.Api.Template",
"version": "0.0.0.13490",
"informationalVersion": "0.0.0",
"configuration": "Debug"

},
{

"name": "Va.XCut.Back.Logger.Std",
"product": "Va.XCut.Back.Logger.Std",
"version": "1.0.0.13490",
"informationalVersion": "1.0.0-Beta01",
"configuration": "Debug"

]
}

Hosting

In non production environments, an API SHOULD expose an endpoint to give
basic information about the hosting server.

{
"machineDomain": "VAUDOISE",
"machineName": "DEVABCDEF",
"machineOS": "Microsoft Windows 10.0.10240 ",
"machineProcessorCount": 8,
"environmentName": ".NET Core 4.6.26606.02",
"environmentArchitecture": "x64",
"serviceName": "Va.XCut.Api.Template.Application",
"serviceProcessId": 8752,

15



"serviceStartTime": "2018-07-05T07:29:44.4771925+02:00",
"serviceMemory": 92827648,
"serviceThreads": 21

}

16


	Table des matières
	Basic principles
	API First
	Design API before implementation

	Compatibility
	Do not break backward compatibility
	Rules to extand an API

	Documentation
	General documentation
	Documentation

	REST
	Resources instead of Verbs
	Use of verbs


	Message
	Data and description
	Encoding
	Enums
	Data and display
	Booleans
	Identifiers
	Identical representation of business data

	Business validations
	Format of business validations

	Business errors
	Structure of business errors

	Exception
	Exception structure
	JSON Payload
	Format - content negociation
	JSON'ception


	Request
	Asynchronism
	Impersonation
	JSON Patch
	Localisation
	Exemple

	Paging

	Nomenclature
	Global rules
	Naming conventions
	Glossary

	URI
	Examples

	Versioning

	Protocol
	HTTP
	HTTP Protocol
	HTTP Codes

	TLS

	Operations
	Environments
	Monitoring
	Monitoring API consumption
	Health check
	Dependencies
	Hosting



